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TIMETABLE

July 29 (Monday)

Time Speaker Schedule
13:00-14:00 ==
14:00-14:20 9] B IAbE
14:20-16:20 271270
16:30-17:30 Semin Yoo Invited Talk: A postdoc life in Korea
17:30-18:20 Open problem session

18:30- Dinner (&3, AE317]4A])

July 30 (Tuesday)

Time Speaker Schedule
09:30-10:30 | Dohyeon Lee Colorful integgg?z;EZiszz‘:jlg(;rg partitions
12:00-14:00 Lunch (&334, AY¥A4])
14:00-15:00 Open problem session
15:30-18:00 Working session

19:30- Dinner (2112 BBQ)




July 31 (Wednesday)

Time Speaker Schedule
09:30-10:30 | Homoon Ryu How to dg:(e);rzl;]?:Z(:apT}?lil:Toeplitz?
11:00-12:00 Working session
12:00-14:00 Lunch (3r=3 8 9 JHX|E3])
14:00-15:00 Progress report
15:00-16:00 | Jungho Ahn Invited Talk: st<=2 z}7] PR HH
16:15-18:00 Working session

18:00- Dinner (Ajo]st7I=, FF=AHEA Al

August 1 (Thursday)

Time Speaker Schedule
09:00-12:00 Excursion: HAHA] AH
12:00-14:00 Lunch
14:00-15:00 Progress report
15:15-18:00 Working session

18:00- Dinner (¢f|7}&, HA]A2Z4H])

August 2 (Friday)

Time Speaker Schedule
09:00-10:00 Working session
10:00-11:30 Progress report

11:30- B 3 A e




INVITED TALK

A postdoc life in Korea July 29
_ 16:30-17:30
Semin Yoo
IBS DIMAG

In this talk, I will talk about my experience of being a postdoc in Korea. In addition, I
will discuss how the job process in Korea is going and share some useful advice to increase
the possibility of getting a tenure-track job even though I have not made it yet.




July 31
15:00-16:00
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CONTRIBUTED TALK

Colorful Intersections and Tverberg Partitions July 30

09:30-10:30
Dohyeon Lee

KAIST & IBS DIMAG

In this talk, I will introduce fundamental theorems in convexity problems of discrete
geometry, including Radon’s theorem, Tverberg’s theorem, Carathéodory’s theorem along
Helly’s theorem along with their colorful versions. I will cover some proofs and techniques
such as linear dependency, Sarkaria’s tensor product method, configuration space/test
map scheme and discrete Morse theory. I will also discuss some transversal theorems,
including our own result and the ideas of proof, if time permits.




July 30
11:00-12:00

Transversal Hamilton paths and cycles of arbitrary orientations
in tournaments

Jaehyeon Seo
Yonsei University

It is well-known that a tournament always contains a directed Hamilton path. Rosenfeld
conjectured that if a tournament is sufficiently large, it contains a Hamilton path of any
given orientation. This conjecture was approved by Thomason, and Havet and Thomassé
completely resolved it by showing there are exactly three exceptions.

We generalized this result into a transversal setting. Let T = {T3,...,T,_1} be a
collection of tournaments on a common vertex set V' of size n. We showed that if n is
sufficiently large, there is a Hamilton path on V' of any given orientation which is obtained
by collecting exactly one arc from each 7;. Such a path is said to be transversal.

It is also a folklore that a strongly connected tournament always contains a directed
Hamilton cycle. Rosenfeld made a conjecture for arbitrarily oriented Hamilton cycles in
tournaments as well, which was approved by Thomason (for sufficiently large tournaments)
and Zein (by specifying all the exceptions). We also showed a transversal version of this
result. Together with the aforementioned result, it extends our previous research, which is
on transversal generalizations of existence of directed paths and cycles in tournaments.

This is a joint work with Debsoumya Chakraborti, Jachoon Kim, and Hyunwoo Lee.




How to determine a graph is Toeplitz?

Homoon Ryu

Seoul National University

A given graph is called Toeplitz if it has the Toeplitz matrix as its adjacency matrix.

I proposed a problem that how can we determine a given graph is a Toeplitz graph or
not. For this purpose, I give a talk about Toeplitz graphs that might be related to this

problem. Some simple observations and some previous results about Toeplitz graphs will
be covered.

July 31
09:30-10:30



OPEN PROBLEMS

Finding two disjoint anticomplete cycles
Jungho Ahn
KIAS

Prove or disprove that in polynomial time, we can find two cycles such that they have
disjoint vertex sets and there is no edge between them.




Characterize the Degree Constraint for the Subgraph
Complement Problem

Shinwoo An
POSTECH

Let X = (Au B, A x B) be a bipartite graph under two sets A, B of size n. Suppose
there is a bipartite graph G < X, which is not given explicitly, but we know the degree
degq(v) for all v € A U B. Moreover, suppose there is another bipartite graph H < X,
which is explicitly given, and we know that degy(v) < degy(v) for every ve A U B.

Here is the problem.

Question 1. Does there exists a bipartite graph I < X such that deg;(v) = degs(v) —
degy (v) for all v?

Of course, this does not holds in general: If deg(v) = 2 for all A U B and degy(v) = 2
for all but two vertices of A U B and degy(v) = 0 for those two vertices, we cannot
construct I. Therefore, here is the open problem.

Problem 2. Classify the degree constraint for G and H so that there exists a bipartite
graph I such that deg;(v) = degg(v) — degy(v) for allve A v B.

We can think about the stronger version.

Problem 3. Classify the degree constraint for G and H so that there exists a bipartite
graph I such that deg;(v) = degs(v) — degy(v) for allve AU B. Furthermore, we impose
the condition that H s given explicitly and H, I are edge-disjoint graphs.




Characterizing the class of graphs of radius-1 flip-width at most 2

Yeonsu Chang
Hanyang University

Torunczyk introduced a graph parameter called radius-r flip-width for r € N U {00},
which is defined using a variant of the cops and robber game, so called a flipper game.

Let G be a graph and let P be a partition of the vertex set of G. We say that G’ is a
P-flipof Gif G'=G®S with S = {(A;, B;) : i € I} such that for all i € I, A;, B; € P.
Since flips are involutive and commute with each other, we may assume that S contains
at most (|7>|2+1) pairs. We say that a P-flip G’ of G is a k-flip if |P| < k.

Let r € Nu {0} and k € N. The flipper game with radius r and width k is played on
a graph G. At the beginning, set Gy = G and the robber selects a starting vertex vy of
G. In each i-th round for i > 0, cops announce a k-flip G; of G and the robber knows G;
and selects a new position v; € V(G) following a path of length at most r from v;_; in the
previous graph G;_;. The game terminates when the robber is caught, meaning that v; is
isolated in G;.

The radius-r flip-width of a graph G, denoted by fw,.(G), is the minimum & such that
the cops have a winning strategy in the flipper game of radius r and width k on G.

We showed that Cs, bull, gem and co-gem have radius-r flip-width at least 3 for each
re (N~ {1}) u {wo} and (Cs, bull, gem, co-gem)-free graphs have radius-r flip-width at
most 2 for each r € N U {o0}.

Theorem 4. Let G be a (Cs, bull, gem, co-gem)-free graph and r € N u {©0}. Then
fu (G) < 2.

We observe that gem and co-gem have radius-1 flip-width at most 2. Thus, the class of
graphs of radius-1 flip-width at most 2 is strictly larger than the class of (Cs, bull, gem,
co-gem)-free graphs.

Question 5. Characterize the class of graphs of radius-1 flip-width at most 2 in terms of
forbidden induced subgraphs.
REFERENCES

[1] Szymon Toruniczyk. Flip-width: Cops and robber on dense graphs. arXiv:2302.00352, 2023
[2] Yeonsu Chang, Sejin Ko, O-joung Kwon, and Myounghwan Lee. A characterization of graphs of
radius-r flip-width at most 2. 2023. arXiv:2306.15206.
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The Lower bounds for (Multicut) Mimicking Network

Kyungjin Cho
POSTECH

Mimicking problem for (G, T) aims to find a minor graph of G maintaining the minimum
edge cut size between two parts (4,7 — A) for any A < T. Additionally, in the context
of separating terminals into more than two parts, there exists a corresponding graph
sparsification problem known as the multicut-mimicking problem. A multicut-mimicking
network for terminals 7" in a normal graph G is a minor graph that preserves the size of
the minimum multicut of any set of cut requests over T. Equivalently, it preserves the
size of the minimum multiway cut of any partition of 7'

It is already known that there exists a planar graph G and terminal set T' < V(G)
where every mimicking network of (G, T) has at least 2/71=2 edges [1]. Especially, there is
a mimicking network of (G, T) with ©(|T|?) edges for any planar graph G and terminals
T < V(G) if terminals in 7" are located on the same face, which is optimal [2, 3].
However, parameterized by k = >, degq(t), it was represented that an instance (G, T)
has a mimicking network with at most O(k*) edges for a general hypergraph G [4, 5].
Furthermore, there is a multicut-mimicking network with k©1°8%) hyperedges if G is a
normal graph (not hypergraph) [6].

Problem 6. Is there an instance (G,T) so that every multicut-mimicking network has at
least kN7 hyperedges, where r is the rank of G which is the mazimum cardinality of an
hyperedge in G?

REFERENCES

[1] Karpov, Nikolai, Marcin Pilipczuk, and Anna Zych-Pawlewicz. "An exponential lower bound for cut
sparsifiers in planar graphs." Algorithmica 81 (2019): 4029-4042.

[2] Goranci, Gramoz, Monika Henzinger, and Pan Peng. "Improved guarantees for vertex sparsification
in planar graphs." STAM Journal on Discrete Mathematics 34.1 (2020): 130-162.

[3] He, Zhiyang, Jason Li, and Magnus Wahlstrom. "Near-Linear-Time, Optimal Vertex Cut Sparsifiers
in Directed Acyclic Graphs." 29th Annual Furopean Symposium on Algorithms (ESA 2021).

[4] Liu, Yang P. "Vertex Sparsification for Edge Connectivity in Polynomial Time." 14th Innovations in
Theoretical Computer Science Conference (ITCS 2023). Vol. 251.

[5] Jiang, Han, et al. "Vertex Sparsifiers for Hyperedge Connectivity." 30th Annual European Symposium
on Algorithms (ESA 2022).

[6] Wahlstrom, Magnus. "Quasipolynomial multicut-mimicking networks and kernels for multiway cut
problems." ACM Transactions on Algorithms (TALG)18.2 (2022): 1-19.
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Minimally asymmetric matroids

Mujin Choi
KAIST & IBS DIMAG
In 1988, Nesetril conjectured that there are only finite number of minimally asymmetric
graphs. In 2016, Pascal Schweitzer and Patrick Schweitzer confirmed that there are exactly
18 minimally asymmetric graphs. We will consider the matroid version of this problem.

Let M be a matroid. We say that M is asymmetric it Aut(M) = 1. We say that M is
minimally asymmetric if no minor of M is asymmetric.

Problem 7. Is there an infinite number of asymmetric matroids? What if we restrict to
representable matroids? If there are only finite number of them, what are they?

12



Chracterizing the digraph in which every ¢ vertices have exactly
A common out-neighbors

Hojin Chu
Seoul National University

In 1966, Erdds proved the “Friendship Theorem" that states a (finite) graph in which
each pair of vertices has exactly one common neighbor has a vertex adjacent to all the
other vertices. Such a graph is called a friendship graph. Follow-up studies have been
actively conducted by many researchers and the results are as follows: a graph in which
every t vertices have exactly A\ common neighbors is regular if ¢ = 2 and A > 2; the
complete graph on t + X\ vertices if ¢t > 3.

Some researchers tried to characterize the digraphs in which every t vertices have exactly
A common out-neighbors. With my co-researchers, I showed that a digraph in which each
pair of vertices has exactly one common out-neighbor, called a liking digraph, is diregular
or a fanch wheel digraph, where a fancy wheel digraph is obtained from the disjoint union
of directed cycles by adding one vertex with arcs to and from each vertex on the cycles.
This result extends the Friendship Theorem since, in a symmetric case, it becomes a
friendship graph if each directed cycle of length two is replaced with an edge. We call such
a digraph a liking digraph. In general, a (t, \)-liking digraph is a digraph in which every ¢
vertices have exactly A common out-neighbors. We showed that a (¢, A)-liking digraph is
the complete graph on t + X\ vertices if £t > A + 1 and ¢ # 2.

Problem 8. Characterize (t, \)-liking digraphs for 3<t <A+ 1, ort =2 and A > 2.

We also tried to characterize the digraphs in which every ¢ vertices share exactly A
out-neighbors and A in-neighbors. We call such a digraph a two-way (t, \)-liking digraph.
We showed that a two-way (¢, A)-liking digraph is diregular if ¢ = 2 and A > 2; the
complete digraph on ¢ + X vertices if ¢ > 3. The results extend the follow-up studies of the
Friendship Theorem. Additionally, these implies that for £ > X + 1, in a digraph, every ¢
vertices have exactly A common in-neighbors if and only if every ¢ vertices have exactly A
common out-neighbors.

Problem 9. Indentify t and X so that, in a digraph, every t vertices have exactly A
common in-neighbors if and only if every t vertices have exactly A common out-neighbors.

13



Grids and cylinders in a graph with many copies of C}

Seonghyuk Im
KAIST & IBS DIMAG

Generalized Turdn number ex(n, F, H) is the maximum number of F' copies in an
n-vertex graph G' which does not contain H as a subgraph. When F' = K5, it is the same
as the classical Turdn number, denoted by ex(n, H).

In 2022, Brada¢, Janzer, Sudakov, and Tomon [1] proved that for any fixed t, ex(n,t x
t grid) = O(n*?). In 2023, Gao, Janzer, Liu, and Xu [3] gave a simpler proof of this result.
They also proved the following.

Theorem 10. Let C5, be a graph obtained by starting with two disjoint copies of Coy and
add a perfect matching between the corresponding vertices. Then for every { = 4,

ex(n, C5,) = O(n*?).

Both of grid and CY, are obtained by attaching Cjys iteratively. Thus, we want to ask
whether the number of Cjy is an essential parameter that guarantees such structures.

Question 11. ex(n,Cy, H) = O(n?) when H ist x t grid or Cs,.

We note that the solution of this question gives an alternative proof of classical Turan
problem as Erdés and Simonovits [2] proves that if G has Cn*? edges for some C' > 10,
then G has at least C*n?/2 copies of Cy.

REFERENCES

[1] Domagoj Brada¢, Oliver Janzer, Benny Sudakov, Istvin Tomon. (2023). The Turdn number of the
grid. Bulletin of the London Mathematical Society, 55(1), 194-204.

[2] Paul Erdés, Miklés Simonovits. (1983). Supersaturated graphs and hypergraphs. Combinatorica, 3,
181-192.

[3] Jun Gao, Oliver Janzer, Hong Liu, Zixiang Xu. (2023). Extremal number of graphs from geometric
shapes. arXiv preprint arXiv:2303.13380.
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Comparing numbers of matchings in two bipartite graphs

Donggyu Kim
KAIST & IBS DIMAG

Hall’s marriage theorem states that for a bipartite graph G with a vertex bipartition
(A, B), if |[Ng(X)| = |X| for all X < A, then G has a matching covering A. So, it is
natural to ask the following question, which I heard from a workshop held in Okinawa [1].

Problem 12. Let Gi and Go be bipartite graphs with bipartitions (A, By) and (A, By). If
|INey (X)| = |Nay(X)| = |X| for every X < A, then is the number of matchings covering
A in G is larger than or equal to that in Gy ?

REFERENCES

[1] The 3rd East Asia Workshop on Extremal and Structural Graph Theory (November 1-5, 2023),
Okinawa, Japan, https://tgt.ynu.ac.jp/2023East Asia.html
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X +Y sorting

Juwon Kim
KAIST

Given two sets of numbers, each of size n, how quickly can the set of all pairwise sums
be sorted? In symbols, given two sets X and Y, our goal is to sort the set

X+Y={z+ylrxeX yeY}
Problem 13. Is there an X + Y sorting algorithm faster than O(n*logn)?

The obvious O(n?logn)-time algorithm is also the fastest known. There are Q(n?)
lower bounds for this problem in various restrictions of the linear decision tree model of
computation [7, 4, 6]. The main problem is whether the logarithmic factor can be removed.

Fredman [7] proved that if a given partial order on m elements has L linear extensions,
then the set can be sorted in at most log, L + 2m comparisons. For the sorting X + Y
problem, we have m = n?, the Hasse diagram of the partial order is an n x n diagonal
grid, and simple arguments about hyperplane arrangements imply that L = O(n®"). Thus,
Fredman’s algorithm can sort X + Y using only 8nlogn 4 2n? comparisons; unfortunately,
the algorithm needs exponential time to choose which comparisons to perform! This
exponential overhead was reduced to polynomial time by Kahn and Kim [8] and then
to O(n%logn) by Lambert [9] and Steiger and Streinu [10]. These results imply that no
superquadratic lower bound is possible in the full linear decision tree model.

If the input consists of n integers between —M and M, an algorithm of Seidel based on
fast Fourier transforms runs in O(n + M log M) time [6]. The Q(n?) lower bounds require
exponentially large integers.

A closely related problem does have a subquadratic solution: find a minimum element
of X +Y, the so-called min-convolution problem, posed by Jeff Erickson [5]. See [2] for
the result and a discussion of connections to the sorting problem.

REFERENCES

[1] A. Hernédndez Barrera. Finding an O(n?logn) algorithm is sometimes hard. In Proc. 8th Canad.
Conf. Comput. Geom., pages 289-294. Carleton University Press, Ottawa, Canada, 1996.

[2] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono,
Stefan Langerman, and Perouz Taslakian. In Proceedings of the 14th Annual European Symposium
on Algorithms (ESA 2006), pages 160-171, Ziirich, Switzerland, September 11-13 2006.

[3] G. Barequet and S. Har-Peled. Polygon containment and translational min-Hausdorff-distance
between segment sets are 3SSUM-hard. Internat. J. Comput. Geom. Appl., 11:465-474, 2001.

[4] M. Dietzfelbinger. Lower bounds for sorting of sums. Theoret. Comput. Sci., 66:137-155, 1989.

[5] Erik D. Demaine and Joseph O’Rourke. Open problems from CCCG 2005. In Proc. 18th Canad.
Conf. Comput. Geom., pages 75-80, 2006.

[6] Jeff Erickson. Lower bounds for linear satisfiability problems. Chicago J. Theoret. Comput. Sci.,
1999(8), 1999.

[7] M. L. Fredman. How good is the information theory bound in sorting? Theoret. Comput. Sci.,
1:355-361, 1976.

[8] Jeff Kahn and Jeong Han Kim. Entropy and sorting. J. Comput. Sys. Sci., 51:390-399, 1995.

[9] Jean-Luc Lambert. Sorting the sums x; +y; in O(n?) comparisons. Theoret. Comput. Sci, 103:137-141,
1992.

[10] W. Steiger and Ileana Streinu. A pseudo-algorithmic separation of lines from pseudo-lines. Inform.

Process. Lett., 53:295-299, 1995.
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Polynomial y-boundedness, Pollyanna class, and self-isolation

Seokbeom Kim
KAIST & IBS DIMAG

For graphs G and H, a copy of H in GG is an induced subgraph of GG isomorphic to H,
and we say G is H-free if it does not have a copy of H. A class of graphs is hereditary if
it is closed under taking induced subgraphs. A hereditary class of graphs C is x-bounded
if there is a function f such that x(G) < f(w(G)) for every G € C, where x(G) and w(G)
denote the chromatic number and the clique number of G, respectively. Such a function f
is called a x-bounding function for C. In particular, if C admits a polynomial y-bounding
function, we say C is polynomially x-bounded.

In the theory of xy-boundedness, there is a long-standing conjecture by Gyarfas and
Sumner that is still widely open.

Conjecture 14 (Gyarfas [5], Sumner [8]). For a graph H, the class of H-free graphs is
x-bounded if and only if H is a forest.

The only if part of the conjecture directly follows from the following theorem by Erdos.

Theorem 15 (Erdos [4]). For integers g,k = 3, there are graphs of chromatic number at
least k that do not contain cycles of length less than g.

It suffices to prove the Gyarfas-Sumner conjecture when H is a tree, as a forest satisfies
the conjecture if and only if each component does. However, things get much harder when
we consider polynomial y-boundedness. Say a forest F'is good if the class of F-free graphs
is polynomially y-bounded.

Question 16. If two forests Fy and Fy are good, is the graph Fy u Fy also good?

(Here, F} U F; denotes the disjoint union of F} and Fs.)

On the other hand, Chudnovsky, Cook, Davies, and Oum [1] recently introduced
the notion of Pollyanna classes of graphs, which is a nice generalization of polynomial
x-boundedness. A hereditary class C of graphs is Pollyanna if C n F is polynomially
x-bounded for every x-bounded class F of graphs. We can again propose a similar question
for Pollyanna classes of graphs: Say a graph H is nice if the class of H-free graphs is
Pollyanna.

Question 17. If two graphs Hy and Hs are nice, is the graph Hy v Hy also nice?

Observe that every polynomially y-bounded class is Pollyanna, but the converse is not
true (consider the class of K;-free graphs). Thus, Question 17 asks for a more general
property than Question 16. Somewhat surprisingly, there is a notion that can give positive
answers to both questions.

A graph J is self-isolating if for every non-decreasing polynomial ¢, there is a polynomial
¥ with the following property. For every graph G with x(G) > ¥(w(G)), there exists
A < V(G) with x(A) > ¢(w(A)) such that either

e G[A]is J-free, or
e (G contains an copy J’ of J such that V' (J') is disjoint from and anticomplete to A.
(Here, x(A) = x(G[A]), w(A) = w(G[A]), and two sets X, Y < V(G) are anticomplete if

there are no edges with one end in X and the other end in Y".)
17



The self-isolation of a graph is a notion that fits well with taking the disjoint union of
good or nice graphs. Indeed, if both graphs H and J are good (respectively, nice) and J
is self-isolating, then H u J is also good (respectively, nice).

Now, we return to the original question: what forests are good? Clearly, stars are good
(by Ramsey’s theorem), and P, is also good (as Py-free graphs are cographs, which are
perfect). However, until recently, it was unknown whether the disjoint union of stars and
Pys is good. In a series of papers, Scott, Seymour, and Spirkl proved that (see [6, 2, 7])

e stars are self-isolating;
e (with Chudnovsky) the path P, on 4 vertices is self-isolating; and
e cvery Ps-free tree is good.

Under this direction, there is a question that remains to be asked.
Problem 18. Is every Ps-free tree self-isolating?

The smallest open case is the following. A fork is a graph obtained from K3 by
subdividing an edge exactly once.

Problem 19. Is a fork self-isolating?

Without considering the context of polynomial y-boundedness, one can also ask which
graphs (not necessarily forests) are self-isolating. Chudnovsky, Scott, Seymour, and
Spirkl [3] showed that cliques and complete bipartite graphs are self-isolating,.

Problem 20. Is the notion of self-isolation closed under taking induced subgraphs? In
detail, suppose that a graph H is self-isolating and H' is an induced subgraph of H. Is it
true that H' is also self-isolating?

Problem 21. If Problem 20 is true, which graphs are minimally non-self-isolating? Can
we fully characterize self-isolating graphs by their forbidden induced subgraphs?

REFERENCES

[1] Maria Chudnovsky, Linda Cook, James Davies, and Sang-il Oum (2023). Reuniting x-boundedness
with polynomial x-boundedness. arXiv:2310.11167.

[2] Maria Chudnovsky, Alex Scott, Paul Seymour, and Sophie Spirkl (2023a). Polynomial bounds for
chromatic number. VI. Adding a four-vertex path. Furopean Journal of Combinatorics. 110, No.
103710, 10.

[3] Maria Chudnovsky, Alex Scott, Paul Seymour, and Sophie Spirkl (2023b). Polynomial bounds for
chromatic number. VII. Disjoint Holes. J. Graph Theory. 104, 499-515.

[4] Paul Erdos (1959). Graph theory and probability. Canadian Journal of Mathematics. 11, 34-38.

[5] Andras Gyarfds (1975). On Ramsey covering-numbers. Infinite and finite sets (Collog., Keszthely,
1973; dedicated to P. Erdds on his 60th birthday), Vol. II, 801-816. Colloq. Math. Soc. Janos Bolyai
10.

[6] Alex Scott, Paul Seymour, and Sophie Spirkl (2022a). Polynomial bounds for chromatic number. II.
Excluding a star forest. J. Graph Theory. 101, 318-322.

[7] Alex Scott, Paul Seymour, and Sophie Spirkl (2022b). Polynomial bounds for chromatic number. III.
Excluding a double star. J. Graph Theory. 101, 323-340.

[8] David P. Sumner (1981). Subtrees of a graph and the chromatic number. The theory and applications
of graphs (Kalamazoo, Mich., 1980), 557-576.
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Geometric join of more than d sets in R? is contratible

Dohyeon Lee
KAIST & IBS DIMAG

Convex hull of a set A is the smallest convex set containing X and denoted by conv.X.
For nonempty subsets X1, ..., X,, of R?, their geometric join X [m] is defined by

X[m] = U CODV{xl? ce 7xm} = {thxz : Zti = 17ti € [0, 1],51% € XZ}
CEZEXZ‘
Each class X;s are called color classes, a subset Y < uXj is called colorful if |Y n X;| <1

for each 7 and its convex hull is referred colorful simplex. In this language, geometric join
of Xi,...,X,, is union of colorful simplex.

Conjecture 22. The geometric join X, is contractible if m = d + 1.
Theorem 23. [1] Conjecture 22 is true for d =2 and d = 3.

If some color class is singleton, then geometric join is star-shaped, so contractible. The
problem is open even for the case m = d + 1 and |X;| = 2 for each i. But there is some

result when m is large.
Theorem 24. [1] Conjecture 22 is true for m > WD) - Moreover for those m, X[m] 18

2
star-shaped.

REFERENCES

[1] Bérany, 1., Holmsen, A. & Karasev, R. Topology of Geometric Joins. Discrete & amp; Computational
Geometry. 53, 402-413 (2015,2), http://dx.doi.org/10.1007/s00454-015-9665-2

19



Random matchings

Hyunwoo Lee
KAIST & IBS ECOPRO
We say a k-uniform hypergraph (k-graph) H is a linear hypergraph if every distinct
pair of edges of H shares at most one vertex in common. For a vertex v € V(H), denote
Py (v) by the probability that a random matching M does not cover v, where M is chosen

uniformly at random from the set of matchings of H.
In 1995, Kahn [1, 2] conjectured the following.

Conjecture 25 (Kahn [1, 2]). Let H be a d-reqular linear k-graph. Then for all vertex
ve V(H), we have Py (v) = (1 + 0g(1))d~*.

This conjecture was verified for the case & = 2 by Kahn and Kim [3] in 1998.
Very recently, I disprove Conjecture 25 for all k£ > 3.

Theorem 26 (L., 2024+ [4]). Let k > 2 be an integer and dy,e > 0 be a positive real
number. Then there exist d > doy and d-reqular linear k-graph H such that the following
holds. There are two vertices vi,ve € V(H) which satisfies the following.

° ’PH(W) > 1 — dlk+_52’

I also show that the gap between two probabilities in Theorem 26 is the best possible.

Theorem 27 (L., 2024+ [4]). Let k > 2 be an integer and € > 0 be a real number. Then
there exists dy > 0 such that for all d = dy and for all d-reqular linear k-graph H, the
following inequality holds for all ve V(H).

1 1—e¢

di-f—lng(ﬁ)<1_

The proof of Theorem 26 use limits of dynamical systems, so our hypergraph is very
large compared with d. Then what if d also varies with the order of the hypergraph?
In this case, we may expect Conjecture 25 would be true. Hence, I raised the following
conjecture.

Conjecture 28 (L., 2024+ [4]). Let k = 3 be a positive integer and 0 < 0, < 1 be a
positive real number. Then there is ng such that the following is true for all n = ng. Let
H be an n-vertex k-graph that satisfies the following. For all v e V(H), the degree of v
lies between (1 —n=°)d and (1 +n=%)d for some d > n¢, and the mazimum codegree of H
is bounded above by n=°d. Then for all ve V(H), we have

Pu (@) = (1 4 0,(1))d" V.
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The a-edge-crossing width

Myounghwan Lee
Hanyang University
The a-edge-crossing width is introduced by Chang, Kwon, and Lee. Roughly, this
parameter minimizes the maximum size of bags when the number of edges crossing a
bag is bounded by «. The relationship between a-edge-crossing width and other graph
parameters is as follows.

tew

ecrw ~ tpw

J

tw

F1GURE 0.1. The hierarchy of the mentioned width parameters. For two
width parameters A and B, A — B means that every graph class of bounded
A has bounded B, but there is a graph class of bounded B and unbounded
A. Also, A ~ B means that two parameters A and B are equivalent. fen,
carvw, ecw, tew, stew, ecrw,, ecrw, tpw, and tw denote feedback edge set
number, carving-width, edge-cut width, tree-cut width, slim tree-cut width,
a-edge-crossing width, edge-crossing width, tree-partition-width, and tree-
width, respectively.

Also, it is known that

e twin-width is closed under mixed minor,
e tree-width is closed under graph minor, and
e tree-cut width is closed under weak immersion, etc.

Question 29. For fized o, does there exist some operation (except vertex and edge deletion)
such that a-edge-crossing width is closed under that operation?

If we find such an operation, then we have one more question.

Question 30. Does there exist some graph class H such that a graph G has large a-edge-
crossing width iff G has some H € H as such operation with vertex and edge deletion?
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Partitioning the hypercube into smaller subcubes

Yongjin Lee
UIuC

Given a d-dimensional hypercube @y, let f(d) be the number of ways to partition Qg
into subcubes. More generally, for S < [d] U {0}, we denote by fs(d) the number of ways
to partition (g into subcubes such that each subcube has a dimension belongs to S.
For instance, fi;; is the number of perfect matchings of (04, whereas fy 1y equals to the
number of different matchings of Q4. I will introduce some results by Alon, Balogh and
Potapov [1] on asymptotic of these functions for some interesting S < [d] U {0}, as well as
some open problems.
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Realizing a Toeplitz graph

Homoon Ryu
Seoul National University
An nxn matrix A = (a;;) is called Toeplitz, if a;; = a;41,;41 forany 4,5 € {1,2,...,n—1}.
A Toeplitz graph is a graph whose adjacency matrix is Toeplitz. If the vertices are labeled,
then it is easy to check whether its adjacency matrix is Toeplitz or not. However, if the

vertices is not labeled, it is not easy to determine that it is Toeplitz or not. In this context,
I propose the following problem.

Problem 31. Is there a proper algorithm to determine that a given graph is Toeplitz
or not? This question can be rewrite as follows: For a given square matriz A, is there a
permutation matriz P such that makes PTAP Toeplitz?
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Monochromatic connectivity of graphs

Jaehyeon Seo
Yonsei University

An edge-colored path is said to be monochromatic if all of its edges have the same
color. For a connected graph G, the monochromatic connection number of G, denoted by
me(G), is the maximum number of colors in an edge-coloring of G so that any two vertices
are connected by a monochromatic path. This was introduced in [3]. See [4] for a survey
related to this concept. By generalizing this for graphs with higher vertex-connectivity,
the monochromatic k-connection number mcy(G) was introduced in [5], which is defined
as the maximum number of colors in an edge-coloring of G so that any two vertices are
connected by k internally vertex-disjoint monochromatic paths. Let

hi(G) = max{mc(H) : H is a minimum spanning k-connected subgraph of G}.

Let H be a minimum spanning k-connected subgraph of G. Color E(H) so that H
has a monochromatic k-connected coloring with hx(G) colors, and color all the edges of
E(G)~ E(H) by further distinct colors. This gives a monochromatic k-connected coloring
of G, whence we may observe mci(G) = e(G) — e(H) + hi(G). The following conjecture
claims that such a coloring of G attains mcy(G).

Conjecture 32 ([5, Conjecture 3|). Let G be a k-connected graph, where k = 2, and let
H < G be a minimum spanning k-connected subgraph. Then

mex(G) = e(G) — e(H) + hi(G)
In particular, if G = K,,, Conjecture 32 becomes the following.

Conjecture 33 ([5, Conjecture 21]). Let n > k = 2. Then

men(Ky) = (Z) - Vﬂ +1.

The following is a partial result of Conjecture 33.

Theorem 34 ([5, Theorem 22]). We have the following.
(1) Let n > k = 2. Then

(0[] <o () [#5252]

(2) Let n > k, where k = 2,3,4,5. Then

men(Ky) = <Z) - F‘ﬂ +1.

The parameters mc(G) and mey(G) are natural opposites of the rainbow connection

number rc(G) and the rainbow k-connection number rc,(G), respectively, which were
introduced in [1] and [2], respectively. I may propose a general question, which seeks for
good connections between the monochromatic parameters and the rainbow parameters.
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Graph class for Jones’ conjecture

Hyeonjun Shin
POSTECH

For a graph G = (V, E), a CYCLE PACKING of G is a set of vertex-disjoint cycles of G,
and a FEEDBACK VERTEX SET is a set of vertices of GG such that the graph induced by
the vertices not in a feedback vertex set is a forest. For the optimization version of these
problems, we consider a maximum cycle packing and a minimum feedback vertex set. For
a graph G, let CP(G) denote the cardinality of a maximum cycle packing, and let FVS(G)
denote the cardinality of a minimum feedback vertex set. There is a well-known conjecture
of the relation between the optimal size of the cycle packing and feedback vertex set of a
planar graph, called Jones’ conjecture.

Conjecture 35. [1, Jones’ conjecture] For every planar graph G. FVS(G) < 2CP(G)

FVS(G) < 5CP(G) is proven by Kloks et al. [1, Theorem 8] in 2002, and Chen et al [2],
Ma et al. [3], and Chappell et al [4] proved FVS(G) < 3CP(G), independently. Furthermore,
for some graph classes, Jones’ conjecture is proven.

e Wheel graphs by Kloks et al. [1] in 2002,

e The special case of outerplanar graphs by Kloks et al. [1, Theorem 11] in 2002,
e Subcubic graphs by Bonamy et al [5] in 2019,

e Halin graphs (based planar graphs) by Béarnkopf and Gy6ri [6] in 2024.

A based planar graph is a planar graph that has a face that is adjacent to every other
face. A Halin graph is a planar graph constructed by connecting the leaves of a tree into a
cycle, and a Halin graph is a based planar graph. In [6], they prove Jones’ conjecture for
a based planar graph as follows. First, they show that in such a based planar graph, there
is a triangle xyz such that d(z) = d(y) = 3 and x and y are on the outer face. And, they
prove Jones’ conjecture by induction, and they prove the inductive step in their proof as
follows. First, if there is a triangle zyz such that d(z) = 2, then they prove the induction
by deleting y and z. If there is a vertex of degree two not in a triangle, then they contract
the vertex (traditional reduction rule of kernelization for FVS problem). The resulting
graph is a based planar graph of which every vertex has a degree of at least three, and
thus there is a triangle xyz such that d(z) = d(y) = 3 and = and y are on the outer face.
Then, they prove the induction by deleting y and z.

Recall that in a based planar graph, a face is adjacent to every other face. Thus,
naturally, the authors propose proving Jones’ conjecture for a planar graph in which there
is a cycle which has at least one edge in common with every face. And, similarly, they
propose proving Jones’ conjecture for a Hamiltonian planar graph.

Problem 36. [6, Problem 3.1| Let be G a planar graph in which there is a cycle which
has at least one edge in common with every face. Then, FVS(G) < 2CP(G)?

Problem 37. [6, Problem 3.2] Let be G a Hamiltonian planar graph. Then, FVS(G) <

2CP(G)?
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Estimating the size of k-Diophantine tuple over F,

Semin Yoo
IBS DIMAG

In this project, we are interested in finding the largest size of k-Diophantine tuple over
F,.

Definition 38. Let S be a set of m positive integers {ay, as, ..., an}. If aya;, - a; +1
is a perfect square for all iy,...,ix € {1,2,...,m} such that 1 <i; <iy < -+ < i < m,
then S is called a k-Diophantine tuple.

Let M (FF,) be the maximum size of k-Diophantine tuples over F,. In 2023, Hammonds,
Kim, Miller, Nigam, Onghai, Saikia, and Sharma [1, Theorem 1.3] confirmed M (F,) >
O((log q)V/=1). In fact, they only considered the case where ¢ is an odd prime, but the
same proof extends to all odd prime powers ¢. Later, Yip and Y. [2] significantly improved
their bound as follows.

Theorem 39. Let k > 2 and let g be an odd prime power. There is an k-Diophantine
tuple over F, with size at least (7 — o(1)) logyq, as ¢ — .

Question 40. Can we further improve the lower bound above?

One possible idea is to use the theory of hypergraphs. We can define a k-uniform
hypergraph by using the property of k-Diophantine tuples. Can we borrow any techniques
from the theory of hypergraphs to improve the size of k-Diophantine tuple over F,?
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